直升机是靠螺旋桨带动几十吨的机身飞行,为什么把桨叶架起来却经不住机身的重量?为什么飞机螺旋桨旋转时产生的是拉力,而电风扇旋转时产生的是
发布时间: 2023-07-18

本文目录

直升机是靠螺旋桨带动几十吨的机身飞行,为什么把桨叶架起来却经不住机身的重量

其实,只要桨叶的受力角度搞正确,即使直升机是静止的,直接用桨叶把它给架起来也是可以的,简单来说就是:桨叶在旋转的时候是一个怎样的角度以及是如何受力的,那么静态时的桨叶也需要以同样的角度去受力,这样的话,桨叶就能把机身给架起来。大家不要想当然的觉得直升机的桨叶在旋转的时候是水平的啊,然后觉得桨叶对机身的作用力就是简单的垂直向上,这样去理解就错了,为什么?因为桨叶并不是直接跟桨轴连接在一起的,而是通过一个叫做“挥舞铰”的部件后才和桨轴连接在一起,这个挥舞铰的作用就是使桨叶能够上下摆动,保证飞行器在飞行时的稳定(挥舞铰的具体作用这里不作详细讨论),所以,在挥舞铰的作用下,直升机的桨叶在旋转的时候其实是这样的:

▲直升机桨叶受力分析图

桨叶在旋转时会稍微向上抬,形成一个 类似“倒锥形”的结构,如上图所示,从图中的受力分析我们可以看到,桨叶在高速旋转过程中,除了会受到升力的影响外,同时还会受到自身离心力(一种虚拟的惯性力)的影响,其中力F1是离心力沿桨叶方向的分力,F2则是与升力相反方向的分力,F2可以抵消掉一部分升力,使桨叶不能在升力的作用下无限度的往上抬,而是保持在一个特定的角度,而且根据桨叶不同位置距离桨轴的距离不同,受到的升力和离心力的大小也是不同的,即桨叶受到的升力也并不是简单的直接桨叶的某一点上,而是需要分配到桨叶的任何一个位置,同时,离心力的分力F1同时会对桨叶产生一个“拔”的力,这个力沿着桨叶方向,简单来说就是:桨叶不仅仅受到往上“抬”的力,同时还会受到一个“拔”的力。“拔”力的受力分析大概如下图所示:

图中F合为F1和F2的合力,这个合力同样起到把直升机拉起来的作用,所以,对于直升机的桨叶来说,首先是升力并不是作用在某一个点的,而是需要分配到整个桨叶上,同时离心力分力F1的作用会进一步减轻桨叶的负担,关于这个对桨叶的“拔”力,我们可以这样理解,举一个例子:用三条长的薄铁片看做是直升机的桨叶,一个重物看做是直升机,铁片固定在重物上,此时如果你直接用铁片抬,那么肯定不能把重物给抬起来,铁片会弯掉,但是如果从一定的角度(倒锥形)同时拉这三条长铁片的话,那么就能很轻松的把重物给抬起来了。因此,直升机的桨叶就有点类似这个原理,在不考虑流体对桨叶升力的话,我们可以直接理解成是通过“拉”或者“拔”桨叶把直升机带起来的。

▲“倒锥形”转动的桨叶

因此,如果想要在静态的时候通过桨叶把直升机“抬起来”,那么就应该把桨叶稍稍往上抬一定的角度,然后沿着桨叶的方向施加拉力,即通过“拔”、“拉”桨叶把直升机给架起来,而不会直接往上抬桨叶,直接往上抬的话,力的作用就集中在桨叶的某一个点,肯定是行不通的,而通过拉桨叶的话,其实力作用点就是在桨轴上,而不是直接在桨叶上,这种情况下,是有可能在静态时通过桨叶把直升机“拉”起来的!

为什么飞机螺旋桨旋转时产生的是拉力,而电风扇旋转时产生的是风

为什么飞机螺旋桨旋转时产生的是拉力,而电风扇旋转时产生的是风?

电风扇可是夏天省不了的电器,仲夏夜,空调加上电风扇,再来一部《决战中途岛》,那绝对是一种享受,美军飞行员驾驶着“无畏”式俯冲轰炸机冒着密集的高射炮火,将炸弹了投向了赤城号航母甲板后方,炸弹穿过甲板在机库中爆炸,赤城号弹药殉爆,不就就沉入波光粼粼的太平洋。

但问题来了,这电风扇吹出的是丝丝凉风,而二战的战斗机前面也是个大风扇,却能将飞机拉到天上,两者之间的差距怎么会那么大呢?

螺旋桨飞机是怎么飞上天的?

早期的飞机都是螺旋桨作为动力的,现代飞机则大都是喷气式动力,所以两者起飞的时候有些许差别,因为螺旋桨飞机发动机在前方,重心也在前方,所以是后三点式起落架,起飞时先抬起尾翼。喷气式发动机重心比较靠后,起飞时先抬起机头,其余的飞行原理就差别不大了!

让飞机起飞的真是伯努利原理吗?

说起飞机飞行的原理,即使上网查询告诉你的也是伯努利原理,道理很简单,机翼上方气流速度大于下方,所以上方气压低,下方气压高,所以产生了升力!而且书本上夹张纸条吹口气就知道原理了一目了然,简直好有道理!

但其实飞机如果真的只靠伯努利原理的话,那估计机翼要增加数倍,因为飞机的升力,我们不排除有一部分来自伯努利原理,但更多的是迎角以及涡流和襟翼,还有附面层下洗气流,90%以上的升力都来自这些区域!

飞机的迎角非常关键,它是飞行器升力的主要来源,它必须在一定的迎角内飞行,比如起飞时推力最大,尾翼向下偏转,给一个抬头力矩,迎角比较大,然后襟翼放下,增加升力,起飞爬升后,襟翼渐渐收起,等爬到一定高度后飞机改平,其实此时仍然有一定的迎角,这个是机翼设计时就有一定的迎角,巡航时保持飞行器的升力!

以前的飞机都是液压或者线控式,都是静安定设计,没有所谓的飞控系统,所以人力都必须要随时控制飞机,不能离开驾驶舱,但现代飞机为了节省油料以及获得更好的飞行性能,大都采用静不安定设计,连客机都开始放宽静稳定设计,因为可以带来更高的升阻比,降低油耗等!

但却有一个缺点,放宽静稳定设计后,所有的操纵面大大小小几十个,用人力来控制显然不人道,所以就会有一套飞控系统来控制,但飞控一旦故障,事情就严重了,去年波音737的事故就是迎角传感器故障,导致飞控认为飞机迎角过大而开始自动调整飞机飞行姿态!

攻角传感器(迎角)

然后就反复调整飞机进入俯冲,以增加速度,获得升力,但结果此时飞机并没有迎角偏大,结果飞机在飞行员控制下强行拉起,然后飞控又进入俯冲,最后飞机失去高度坠毁!

飞机迎角是不是很重要?

当然飞机动力更重要!

其实飞机采用什么动力根本就没啥关系,足够的推重比即可,一般喷气式战斗机至少也得0.6左右,大部分三代机都是0.8到1.0,而现代高性能战斗机则是1.1-1.2!

客机和早期的螺旋桨飞机,推重比就很低了,只需要0.1-0.2即可,当然两者机翼形状不一样,早起螺旋桨飞机都是矩形翼,或者椭圆翼,升力比较大,但阻力也大,而且不适合高速飞行!现代飞机的梯形翼或者三角翼,或者两者结合,甚至前掠翼等,都是高性能机翼!

只要有合适的发动机,连板砖都飞起来,英雄不问出处,螺旋桨也能提供动力,它转动把空气向后推,反作用力飞机取得飞行的动力,这个向后推出的空气量产生的拉力和飞机重量相比,就是推重比了,但有几个非常关键的参数就是,螺旋桨形状、桨距和转速。

桨型很关键,如果装个电风扇那样宽大的螺旋桨上去,尽管它排出的空气量确实不小,但还有一个螺旋桨的面积产生的阻力,绝对得不偿失!

还有一个则是桨距,这个很好理解,桨距就是螺旋桨偏转的角度,当然角度越大,风量也越大,但它总有个极限,比如变成90度就没戏了,所以它和转速以及桨型之间有一个关系,最大化利用动力当然是极好的!

不同桨距模式

最后则是转速,螺旋桨尖很容易在高速下突破音速,所以此时螺旋桨尖就气流就分离了,失去了螺旋桨的作用,因此避免超音速气流分离也是高速空气桨的可以课题,这个其实简单,控制转速不就好了么?但同样存在一个效率问题。

电风扇怎么就没飞上天呢?

准确的说电风扇没有上天是因为它的功率太低了,比如直升机全都是螺旋桨产生的升力来来悬停,当然还有部分地效作用,所以直升机悬停分有地效悬停和无地效悬停,相对有地效悬停海拔可以高一些,无地效悬停海拔就比较低了!

差别可

微信