门捷列夫元素周期表解读(门捷列夫的历史与元素周期表的发展
发布时间: 2023-07-10

本文目录

门捷列夫的历史与元素周期表的发展

一提到元素周期表,我相信大家现在依然能口述出前二十位元素,因为元素周期表在我们的学习生涯中,和乘法口诀的重要性相当。所以我们今天就聊一聊元素周期表是如何发展的,以及在解释元素化学性质的趋势方面,原子结构被人们理解之前的作用和预测未知元素方面的重要性。

谈现代炼金术和“超重”元素的发现:自从门捷列夫提出元素的周期性分类理论以来,科学家们就开始着手发现了更多的元素。过去40年左右的时间里,科学家们用高能粒子轰击原子一直在寻找地球上通常不存在的元素。试图实现炼金术士点石成金的梦想,即把一种元素变成另一种元素。

1999年,加州的科学家声称已经制造出了118号“超重元素”。他们从元素周期表的位置预测,这种元素将是第七种惰性气体。三年后,这些科学家撤回了他们的发现,原因是他们无法通过重复实验来发现这种新元素。但是在2002年至2005年期间,俄罗斯和美国科学家通力合作最终收集到足够的证据,并宣布发现了118号元素。科学家们的结果表明,他们从这种新元素中制造了几个原子,然后这些原子自发地分解成更简单的元素。

该元素的符号为Uuo,名称为ununoctium。这种元素的符号和名称看起来并不像我们平时认识到的其他元素,科学家们可能需要很多年才能给它一个两个字母的原子符号和一个合适的名称,因为在定义元素名称上必须有国际协议。
几千年来,人们对周围世界的物质性质一直很好奇,并对构成这些物质的最简单的物质形式或“元素”进行了理论研究。

然而,直到近200年现代实验工作开始以来,化学家们才确信他们已经发现了元素,一种化学上无法转化为更简单物质的物质,这时化学家才能开始设计出有用的理论来解释元素是如何相互联系的,这些理论有助于科学家在材料学的知识和理解上取得进展。

1869年2月17日,俄国化学家德米特里·门捷列夫(Dmitri Mendeleev)发表了关于元素性质的著作,他把早期人们的观察和发现,按照原子质量的顺序把化学元素的符号集合起来。门捷列夫的对化学元素的整合成为第一个现代元素周期表。极大地加速了新元素的发现和对其性质的理解。

2000多年前,古希腊人把世界上所有的物质都描绘成由土、水、空气和火四种“元素”组成的。现在让我们看来,这个想法似乎很不靠谱,但古希腊人是思想家,而不是实验科学家。他们的模型反映了物质的三种状态。如固体、液体、气体,它们具有相互转化的能力。

一些比古希腊文明还要久远的文明,它们通过将矿石与木炭混合,在一个简单的熔炉中加热,就能生产出铜和汞等金属元素。在古代生产金属及其合金的动力不是因为人们对化学本身感兴趣,而是因为人们需要制造耐磨性强、不易破碎的工具和武器。
在道尔顿的原子理论中,他提出了原子是一种元素中最小的部分,并且不能被分裂,而且一种特定元素的原子有其特有的质量。我们现在称这个质量为元素的相对原子质量,但在道尔顿时代,它被称为原子量。

约翰·德贝赖纳(Johann Dobereiner)是寻找元素分类方法的科学家之一。1829年,他报告了他在当时已知的元素中发现的模式和规律。他注意到,具有类似性质的元素可以分为三个元素,即三素元素,并且在它们的相对原子质量值中有一个数学模式。其中一个三素组合是锂、钠和钾,这些元素是戴维通过电解发现的。

德贝赖纳的发现已经开始给大自然带来了秩序。他的研究显示出相对原子质量中存在的模式。1864年,约翰·纽兰兹将元素按相对原子质量的顺序排列。他也发现了一种模式,具有相似化学性质的元素彼此之间相隔八个位置,就像八度音阶中的音符一样。
门捷列夫早期的元素周期表在他那个时代的化学家中产生了相当大的影响,因为元素周期表揭示了已知和未知元素特性的清晰模式和趋势。化学家们第一次能够猜测可能存在的元素,周期表上的缺口也激励着化学家们有目标的去寻找新的元素。

简述门捷列夫的元素周期律

元素周期律
元素的物理、化学性质随原子序数逐渐变化的规律叫做元素周期律。元素周期律由门捷列夫首先发现,并根据此规律创制了元素周期表。
结合元素周期表,元素周期律可以表述为:
随着原子序数的增加,元素的性质呈周期性的递变规律:
在同一周期中,元素的金属性从左到右递减,非金属性从左到右递增,
在同一族中,元素的金属性从上到下递增,非金属性从上到下递减;
同一周期中,元素的最高正氧化数从左到右递增(没有正价的除外),最低负氧化数从左到右逐渐增高;
同一族的元素性质相近。
以上规律不适用于稀有气体。
此外还有一些对元素金属性、非金属性的判断依据,可以作为元素周期律的补充:
元素单质的还原性越强,金属性就越强;单质氧化性越强,非金属性就越强。
元素的最高价氢氧化物的碱性越强,元素金属性就越强;最高价氢氧化物的酸性越强,元素非金属性就越强。
元素的气态氢化物越稳定,非金属性越强。
还有一些根据元素周期律得出的结论:
元素的金属性越强,其第一电离能就越小;非金属性越强,其第一电子亲和能就越大。
元素周期律的预见性
门捷列夫在创制周期表时,没有完全按照原子量的大小排列,而是严格遵守了“同族元素性质相近”这一规律。在周期表中留下的空位后来都被填上(如钪、镓等),而且性质也与门氏的预言吻合。他还根据周期律更正了铟等元素的原子量。
时至今日,人们还在用元素周期律来推测已发现和未发现的放射性元素的性质。
元素周期律的本质
电子构型是元素性质的决定性因素,而元素周期律是电子构型呈周期性、递变性变化规律的体现。
为了达到稳定状态,不同的原子选择不同的方式。同一周期元素中,轨道越“空”的元素越容易失去电子,轨道越“满”的越容易得电子。随着从左到右价层轨道由空到满的逐渐变化,元素也由主要显金属性向主要显非金属性逐渐变化。同一族元素中,由于周期越高,价电子的能量就越高,就越容易失去,因此排在下面的元素一般比上面的元素更具有金属性。具有同样价电子构型的原子,理论上得或失电子的趋势是相同的,这就是同一族元素性质相近的原因。

解释一下元素周期表

元素周期表是元素周期律用表格表达的具体形式,它反映元素原子的内部结构和它们之间相互联系的规律。元素周期表简称周期表。元素周期表有很多种表达形式,目前最常用的是维尔纳长式周期表。元素周期表有7个周期,有16个族和4个区。元素在周期表中的位置能反映该元素的原子结构。周期表中同一横列元素构成一个周期。同周期元素原子的电子层数等于该周期的序数。同一纵行(第Ⅷ族包括3个纵行)的元素称“族”。族是原子内部外电子层构型的反映。例如外电子构型,IA族是ns1,IIIA族是ns2
np1,O族是ns2
np4,
IIIB族是(n-1)
d1·ns2等。元素周期表能形象地体现元素周期律。根据元素周期表可以推测各种元素的原子结构以及元素及其化合物性质的递变规律。当年,门捷列夫根据元素周期表中未知元素的周围元素和化合物的性质,经过综合推测,成功地预言未知元素及其化合物的性质。现在科学家利用元素周期表,指导寻找制取半导体、催化剂、化学农药、新型材料的元素及化合物。

门捷列夫的元素周期表有什么规律呀,怎么递推出元素的性质

【元素周期律的发现】
19世纪60年代,化学家已经发现了60多种元素,并积累了这些元素的原子量数据,为寻找元素间的内在联系创造必要的条件.俄国著名化学家门捷列夫和德国化学家迈耶尔等分别根据原子量的大小,将元素进行分类排队,发现元素性质随原子量的递增呈明显的周期变化的规律.1868年,门捷列夫经过多年的艰苦探索,发现了自然界中一个极其重要的规律—元素周期规律.这个规律的发现是继

微信