马氏体相变的可逆性?马氏体相变的本质是什么必须要淬火
发布时间: 2023-07-10

本文目录

马氏体相变的可逆性

马氏体相变具有可逆性。当母相冷却时在一定温度开始转变为马氏体,把这温度标作Ms,加热时马氏体逆变为母相,开始逆变的温度标为As。图8中表示Fe-Ni和Au-Cd合金的Ms和As,它们所包围的面积称为热滞面积,可见Fe-Ni马氏体相变具有的热滞大,而Au-Cd则很小。相变时的协作形变为范性形变时,一般热滞较大;而为弹性形变时,热滞很小。像Au-Cd这类合金冷却时马氏体长大、增多,一经加热又立即收缩,甚至消失。因此这类合金的马氏体相变具有热弹性,称为热弹性马氏体相变。

马氏体相变的本质是什么必须要淬火吗

马氏体相变,用一句话来概括就是:无原子扩散而发生的晶体结构的转变。
不只有淬火过程,在高应力状态下,有些材料为了适应(accommodate)这种应力状态,也会发生晶体结构的转变,属于应力诱发马氏体相变。

马氏体转变的主要特征

(1)宏观形状效应。不但有体积变化,而且有形状变化。如图2所示,在母相的自由表(平)面上,转变成马氏体的那块面积发生一定角度的倾斜,并仍保持为平面。由此带动邻近的母相呈山峰状凸起(另一侧下凹),原始态表面的直线刻痕转入新相后仍为直线,在界面处不断开,保持连续。
(2)非扩散。生成相与母相成分相同,以共格或半共格界面为生长相界面,故不存在相界面迁移的热激活机制。形核率和长大速度皆与扩散型转变的热动力学处理结果显著不符。
(3)惯习现象。生成相的片、板的空间取向不是任意的,而是平行于母相的某个晶面(称为惯习面)。作为母相的一个原子面,惯习面在相变过程中既不畸变,也不转动,是不变平面。图3是对图2的局部作进一步标注,a’b’曲面发生转动,面积也有变化;但AB线段长度不变,方向也不变。作为母相的一个原子面,ABcD在相变过程中既无畸变,又不转动,连位置都没有变化(称中脊面)。a’b’c’d’和abcd两面仅有平移,无畸变及转动。惯习面是母相中与ABCD同族的晶面,马氏体片只能在这族晶面的空间方位产生。
(4)不变平面应变。根据上述诸特征,如平面在相变后仍为平面、非扩散、共格性,尤其具有不变平面(惯习面),判定马氏体转变是以不变平面应变的方式(而不是界面原子热激活跃迁的方式)进行晶格类型的改组。
(5)严格的晶体学关系。这是新相生长时迁移界面与母相共格的必然结果。铁碳合金的面心立方(7)一体心正方(a’)马氏体转变,为著名的K—S 马氏体转变时的不变平面,即(111)y∥(011)a,a
(6)伴生特定的晶体缺陷亚结构。马氏体中亚结构有位错、孪晶和层错三类。
热力学条件马氏体转变与扩散型的晶型转变热力学条件的区别,在于要求大的过冷。图7为马氏体转变热力学条件的示意,Gy和Ga分别表示高温相(y)和马氏体(a)晶体的自由焓。为简化,设平衡点T。附近两相熵(s)值恒定,G一T成为直线关系(倾斜率为S)。马氏体转变开始点Ms低于T0。当温度仅到达低于T0而高于Ms时,y-a马氏体转变不可能进行;换言之,转变要求驱动力△Gy-a达到一个临界值: 才能进行。这一驱动力主要用于克服马氏体形核时巨大的共格畸变能和提供马氏体内伴生的晶体缺陷(亚结构)储存能。

马氏体相变的特征机制

马氏体相变 具有热效应和体积效应,相变过程是形成核心和长大的过程。但核心如何形成,又如何长大,目前尚无完整的模型。马氏体长大速率一般较大,有的甚至高达10cm·s。人们推想母相中的晶体缺陷(如位错)的组态对马氏体形核具有影响,但目前实验技术还无法观察到相界面上位错的组态,因此对马氏体相变的过程,尚不能窥其全貌。其特征可概括如下:
马氏体相变是无扩散相变之一,相变时没有穿越界面的原子无规行走或顺序跳跃,因而新相(马氏体)承袭了母相的化学成分、原子序态和晶体缺陷。马氏体相变时原子有规则地保持其相邻原子间的相对关系进行位移,这种位移是切变式的(图1)。原子位移的结果产生点阵应变(或形变)(图2)。这种切变位移不但使母相点阵结构改变,而且产生宏观的形状改变。将一个抛光试样的表面先划上一条直线,如图3a中的PQRS,若试样中一部分(A1B1C1D1-A2B2C2D2)发生马氏体相变(形成马氏体),则PQRS直线就折成PQ、QR’及R’S’三段相连的直线,两相界面的平面A1B1C1D1及A2B2C2D2保持无应变、不转动,称惯习(析)面。这种形状改变称为不变平面应变(图3)。形状改变使先经抛光的试样表面形成浮突。由图4可见,高碳钢马氏体的表面浮突,它可由图5示意,可见马氏体形成时,与马氏体相交的表面上发生倾动,在干涉显微镜下可见到浮突的高度以及完整尖锐的边缘(图6)。

马氏体相变体积变大的原因

过冷奥氏体向马氏体转变有三个特性.
1.其转变属于相成份不发生变化的相变.
2.其转变不能进行到底,总保留一部分未转变的奥氏体(残留奥氏体).
3.其转变会引起大的应力.
原子在马氏体体心立方晶格中紧密程度,要比在体心立方,更比面心立方晶格来的稀松,即在同等重量条件下,马氏体的体积要比珠光体大,比奥氏体更大.因此当奥氏体向马氏体转变时,体积会发生膨胀,最大约4%.由于奥氏体向马氏体的转变是在低于Ms点(对共析钢约240℃)降温过程中进行的,体积的这一变化不可能在钢体表里层之间,各晶粒之间,甚至一晶粒内各部分之间同时均匀地进行.这样,由组织转变而引起体积变化的不均匀性,会在钢体内部造成很大的应力(组织应力).这一应力足以使塑性很差的钢,特别是含碳量大于0.35%的钢,在室温停放过程中变形和开裂.

马氏体相变有什么特征机制

马氏体相变是一种无扩散相变或称位移型相变。严格地说,位移型相变中只有在原子位移以切变方式进行,两相间以宏观弹性形变维持界面的连续和共格,其畸变能足以改变相变动力学和相变产物形貌的才是马氏体相变。徐祖耀在总结以往诸多学者定义马氏体相变的基础上,提出这样简单的定义:替换原子无扩散(成分不改变,近邻原子关系不改变)和切变(母相和马氏体之间呈位向关系)而使其形状改变的相变,其中相变泛指一级(具有热量突变和体积突变,如放热和膨胀)形核长大型相变。
马氏体最初是在钢中发现的:将钢加热到一定温度后经迅速冷却,得到的能使钢变硬、增强的一种淬火组织。1895年法国人奥斯蒙为纪念德国冶金学家马滕斯,把这种组织命名为马氏体。人们最早只把钢中由奥氏体转变为马氏体的相变称为马氏体相变。20世纪以来,对钢中马氏体相变的特征累积了较多的知识,又相继发现在某些纯金属和合金中也具有马氏体相变,如:Ce、Co、Hf、Hg、La、Li、Ti、Tl、Pu、V、Zr、和Ag-Cd、Ag-Zn、Au-Cd、Au-Mn、Cu-Al、Cu-Sn、Cu-Zn、In-Tl、Ti-Ni等。目前广泛地把基本特征属马氏体相变型的相变产物统称为马氏体。
马氏体相变的特征机制:
马氏体相变具有热效应和体积效应,相变过程是形成核心和长大的过程。但核心如何形成,又如何长大,目前尚无完整的模型。马

微信